
CS205b/CME306

Lecture 4

1 Time Integration

We now consider several popular approaches for integrating an ODE.

1.1 Forward Euler

Forward Euler evolution takes on the form
(

x
v

)n+1

=

(

x
v

)n

+ ∆t

(

v
a

)n

.

Because forward Euler is unstable when the system contains pure imaginary eigenvalues, it is
unstable without damping. In particular, av < 0. Forward Euler is stable when |∆tλ + 1| < 1. A
time step restriction of ∆t ≈ |λ|−1 is required. As problems get stiffer, max |λ| becomes larger, and
consequently the time step that can be taken becomes smaller. The stability region for forward
Euler is shown in Figure 1(a). If the system has eigenvalues near the imaginary axis, we would
be much better off using using a different method such as one of the higher order Runge-Kutta
methods.

1.2 Runge-Kutta Methods

There are a number of Runge-Kutta methods in common use. The Runge-Kutta methods were
discussed in more detail in CS205A, so they are only highlighted here. The second order Runge-
Kutta method is technically linearly unstable without damping since its stability region does not
include the imaginary axis. Roundoff with av < 0 may be sufficient, and nonlinear effects can
sometimes rectify the problem. The third order Runge-Kutta method is stable without damping,
since its stability region includes part of the imaginary axis. It is suitable for system with av = 0.
Stability regions for various Runge-Kutta methods are shown in Figure 1.

1.3 Backward Euler

The need for a time step restriction is true of all explicit methods. By contract, implicit methods
often have a much better time step restriction that makes them more suitable even though they
require a linear system solve and are thus much more expensive per step.

Backward Euler is the simplest of the implicit methods. Its stability region (Figure 2(a)) looks
very different from those of the explicit integrators. It takes the form

(

x
v

)n+1

=

(

x
v

)n

+ ∆t

(

v
a

)n+1

.

1

1 2−1−2

1

2

−1

−2

(a) Forward Euler (First Order Runge-Kutta)

1 2−1−2

1

2

−1

−2

(b) Second Order Runge-Kutta

1 2−1−2

1

2

−1

−2

(c) Third Order Runge-Kutta

1 2−1−2

1

2

−1

−2

(d) Fourth Order Runge-Kutta

Figure 1: Stability regions for Runge-Kutta. The scheme is stable with time step size ∆t if ∆tλ, a
complex number in general, is located within the shaded region of the complex plane. Note that the
third and fourth order schemes have stability regions that encompass the imaginary axis, making
them stable on undamped problems. The first and second order schemes do not have this property.

2

1 2−1−2

1

2

−1

−2

(a) Backward Euler

1 2−1−2

1

2

−1

−2

(b) Trapezoid Rule

Figure 2: Stability regions for two implicit time integration schemes. The scheme is stable with
time step size ∆t if ∆tλ, a complex number in general, is located within the shaded region of the
complex plane.

Note that the new values being obtained occur on both sides of the equation, so a solve is typically
necessary at each time step. Backward Euler has no time step restriction for stability, but large
time steps do result in poor accuracy.

The solve required for backward Euler can be relatively easy in the case of linear ODEs. For
example, if the only force is drag, F = −kv and a = −kv/m. Then, vn+1 = vn − ∆tkvn+1/m so
that vn+1 = (1 + ∆tk/m)−1vn and xn+1 = xn + ∆tvn+1 = xn + ∆t(1 + ∆tk/m)−1vn are relatively
easily obtained. Note that this damps velocity each time step, and it damps more with larger time
steps. This is in contrast to forward Euler, where vn+1 = (1 − ∆tk/m)vn. Damping here occurs if
∆t < 2m/k = (max |λ|)−1 but amplification occurs for larger time steps.

More generally, backward Euler requires solving a linear system. If the ODE is nonlinear, it
will typically be more difficult and expensive to solve and requires that the nonlinear system first
be linearized.

1.4 Trapezoid Rule

Forward Euler evolution takes on the form
(

x
v

)n+1

=

(

x
v

)n

+
1

2
∆t

(

v
a

)n

+
1

2
∆t

(

v
a

)n+1

.

Because forward Euler is unstable when the system contains pure imaginary eigenvalues, it is
unstable without damping. In particular, av < 0. Forward Euler is stable when |∆tλ + 1| < 1. A
time step restriction of ∆t ≈ |λ|−1 is required. As problems get stiffer, max |λ| becomes larger, and
consequently the time step that can be taken becomes smaller. The stability region for forward

3

0 1 2 3
0

1

e−t

∆t = 4

∆t = 2

∆t = 1

∆t = 1

2

∆t = 1

4

Figure 3: Effects of large time step sizes on numerical simulation of y′ = −y with backward Euler.

Euler is shown in Figure 2(b). If the system has eigenvalues near the imaginary axis, we would
be much better off using using a different method such as one of the higher order Runge-Kutta
methods.

1.5 Newmark Method

Newmark methods are the most famous of the multivalue methods in computation solids. Mul-
tivalue methods are those that take advantage of the fact that higher order derivatives can be
computed at lower accuracy to be more efficient. The Newmark method is a two-parameter family
of methods:

xn+1 = xn + ∆tvn +
∆t2

2
((1 − 2β)an + 2βan+1)

vn+1 = vn + ∆t((1 − γ)an + γan+1).

The specific method depends on the choice of β and γ chosen.

Constant acceleration equations, β = γ = 0

xn+1 = xn + ∆tvn +
∆t2

2
an vn+1 = vn + ∆tan

Implicit acceleration, β = 1/2 and γ = 1

xn+1 = xn + ∆tvn +
∆t2

2
an+1 vn+1 = vn + ∆tγan+1

The velocity update is the first order backward Euler update. The position update can be written
as

xn+1 = xn + ∆t
vn + vn+1

2
,

which is just the second order accurate trapezoid rule. This choice is still only first order accurate
overall.

There is a theorem that states that second order accuracy is obtained if and only if γ = 1/2.
The following two methods are second order Newmark methods.

4

Trapezoid rule, β = 1/4 and γ = 1/2

xn+1 = xn + ∆tvn +
∆t2

2

an + an+1

2
vn+1 = vn + ∆t

an + an+1

2

This method gets its name since the position equation can also be rewritten as a trapezoid rule
update as

xn+1 = xn + ∆t
vn + vn+1

2
.

Central differencing, β = 0 and γ = 1/2

xn+1 = xn + ∆tvn +
∆t2

2
an vn+1 = vn + ∆t

an + an+1

2
.

The name of this method comes from the ability of its updates to be expressed as the central
differences

xn+1 − xn−1

2∆t
= vn xn+1 − 2xn + xn−1

∆t2
= an.

These equations can be obtained by

xn+1 + xn =

(

xn + ∆tvn +
∆t2

2
an

)

+

(

xn−1 + ∆tvn−1 +
∆t2

2
an−1

)

xn+1 − xn−1 = ∆tvn +
∆t2

2
an + ∆tvn−1 +

∆t2

2
an−1

xn+1 − xn−1

∆t
= vn + vn−1 + ∆t

an + an−1

2
xn+1 − xn−1

2∆t
= vn

xn+1 − xn =

(

xn + ∆tvn +
∆t2

2
an

)

−

(

xn−1 + ∆tvn−1 +
∆t2

2
an−1

)

xn+1 − 2xn + xn−1 = ∆tvn +
∆t2

2
an − ∆tvn−1 −

∆t2

2
an−1

xn+1 − 2xn + xn−1

∆t
= vn − vn−1 +

∆t

2
(an − an−1)

xn+1 − 2xn + xn−1

∆t
= vn−1 + ∆t

an−1 + an

2
− vn−1 +

∆t

2
(an − an−1)

xn+1 − 2xn + xn−1

∆t2
= an

1.6 Staggering the Position and Velocity

Define velocity halfway between time steps so that the update

vn+1/2 =
xn+1 − xn

∆t

5

is second order accurate. Note that xn is still defined at the normal times. We can then define vn

by averaging nearby velocities as

vn =
vn−1/2 + vn+1/2

2
=

xn+1 − xn−1

2∆t
,

which is also central differencing for velocity. The update formula for positions is then just

xn+1 = xn + ∆tvn+1/2.

Acceleration is also at grid points

an = a(xn, vn) = a

(

xn,
vn−1/2 + vn+1/2

2

)

so the update
vn+1/2 = vn−1/2 + ∆tan

is also second order accurate. We also have the second order accurate central difference formula

xn+1 − 2xn + xn−1

∆t2
= an.

We can combine these formulas to obtain the explicit formula for a half time step

vn =
vn−1/2 + vn+1/2

2

vn =
(vn+1/2 − ∆tan) + vn+1/2

2

vn+1/2 = vn +
∆t

2
an

which is then used to update positions. Note that these two steps are equivalent to

xn+1 = xn + ∆tvn +
∆t2

2
an.

Finally, velocities are updated another half step using the implicit update

vn+1 =
vn+1/2 + vn+3/2

2

vn+1 =
vn+1/2 + (vn+1/2 + ∆tan+1)

2

vn+1 = vn+1/2 +
∆t

2
an+1 = vn+1/2 +

∆t

2
a(xn+1, vn+1)

The overall velocity update is

vn+1 = vn+1/2 +
∆t

2
a(xn+1, vn+1) = vn +

∆t

2
a(xn, vn) +

∆t

2
a(xn+1, vn+1).

which is just the trapezoid rule.
The dependence of acceleration on velocity is often symmetric (e.g., damping forces), so that a

fast solver like preconditioned conjugate gradient can be employed.

6

