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Lecture 16

1 Incompressible Flow

1.1 Laplace Equation in 1D

Supplementary Reading: Osher and Fedkiw, §18.1, §18.2

Recall that the system of equations we must solve for incompressible flow is

∇ · u = 0

ρt + u · ∇ρ = 0

ut + u · ∇u +
∇p

ρ
= g.

The Laplace equation in 1D is given by

pxx = 0.

The solution is simply a line
p = ax + b. (1)

The values of the constant a and b are determined by boundary conditions. Assume that the
domain is the interval [0, 1]. We may have Dirichlet boundary conditions, where the value of the
function p is given at the boundary. For example,

p(0) = p0 p(1) = p1.

Plugging the boundary conditions in the equation(1), we get

p(0) = b = p0

p(1) = a + b = p1 ⇒ a = p1 − p0

so the coefficients a and b are uniquely determined. Alternatively, Neumann boundary conditions
specify the value of px at the boundary. For example,

px(0) = 0 ⇒ a = 0.

This gives us a family of lines with slope 0. To find b, we would need another piece of information.
A Dirichlet boundary condition would pick out one of the lines with slope 0, thus determining
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the solution. But observe that specifying two Neumann conditions could lead to no solution. For
example,

px(0) = 0 px(1) = 1.

These two boundary conditions are inconsistent, hence there is no solution. Another example is

px(0) = 0 px(1) = 0.

In this case, the given boundary conditions are consistent, but incomplete. We still do not have
enough information to identify a unique solution. The above examples illustrate the fact that in
1D, for the Laplace equation, we can determine the solution if we have two Dirichlet boundary
conditions or one Neumann and one Dirichlet boundary condition, but will have either no solution
or an underdetermined solution in the case of two Neumann boundary conditions.

1.2 Discretizing Laplacian of Presssure

We need to numerically solving Poisson’s equation

pxx = f(x).

We will also need the gradient to apply the pressure. We use second order central differencing for
both. At each cell face, we approximate the pressure gradient with

(px)i+1/2 =
pi+1 − pi

∆x
+ O(∆x2).

From this we use central differencing again to express the Laplacian at each grid node

(pxx)i =
(px)i+1/2 − (px)i−1/2

∆x
+ O(∆x2)

=
pi+1 − 2pi + pi−1

∆x2
+ O(∆x2)

= fi.

The result is a coupled linear system that we need to solve in order to determine p on the entire
domain. However, we cannot write this equation as is for the grid points near the boundary since it
will involve points outside of the domain. For example, assume that our domain is the interval [0, 1]
and that we have grid points 0, 1, . . . ,M,M + 1 uniformly spaced on the domain. The equation for
p1 is

p2 − 2p1 + p0

∆x2
= f1.

If we have a Dirichlet boundary condition specified on the left of the domain

p0 = β,

then the equation for p1 becomes
p2 − 2p1

∆x2
= f1 −

β

∆x2
.

If we have a Neumann boundary condition specified at the half grid point 1
2

(px) 1

2

= α,
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we write the equation for p1 as
p2−p1

∆x −
p1−p0

∆x

∆x
= f1.

Since

(px) 1

2

=
p1 − p0

∆x
+ O(∆x2),

the equation for p1 becomes
p2 − p1

∆x2
= f1 +

α

∆x
.

Let’s look at the matrix equation for the case where we have two Dirichlet boundary conditions.
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The matrix is symmetric negative definite. This is advantageous because there are fast linear
solvers for such systems, e.g. the conjugate gradients method.

In the case with two Neumann boundary conditions, the matrix equation is
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∆x2f1 + ∆x(px) 1
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.

Notice that the matrix has changed. In particular, it is singular since it has a non-empty null space
which is spanned by the vector (1, . . . , 1)T . This is problematic, but workable. It can be solved for
p up to a constant, since for any solution, ~p, ~p + c(1, . . . , 1)T is also a solution.

In multiple dimension Poisson’s equation is

∆p = f.

In 2D the equation is
pxx + pyy = f.

We again use the second order accurate central differencing to obtain the gradient components at
the cell faces

(px)i+1/2,j =
pi+1,j − pi, j

∆x
+ O(∆x2)

(py)i,j+1/2 =
pi,j+1 − pi, j

∆y
+ O(∆y2)
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from which we apply central differencing again to obtain the Laplacian

(∆p)i,j =
(px)i+1/2,j − (px)i−1/2,j

∆x
+

(py)i,j+1/2 − (py)i,j−1/2

∆y
+ O(∆x2) + O(∆y2)

=
pi+1,j − 2pi,j + pi−1,j

∆x2
+

pi,j+1 − 2pi,j + pi,j−1

∆y2
+ O(∆x2) + O(∆y2)

= fi,j.

In 2D we need boundary conditions specified around the entire domain. If at least one boundary
condition is Dirichlet, then the resulting matrix will be a banded symmetric positive definite matrix.
We can use an iterative solver such as preconditioned conjugate gradients. If all the boundary
conditions are Neumann, then the matrix will have a null space, and we must ensure we have a
compatible system.

If the density is spatially varying, then we must use a discretization with variable coefficients.
To simplify the notation slightly, let β = 1

ρ . Then, we can write

(

∇ ·
1

ρ
∇p

)

i,j

= (∇ · β∇p)i,j

=
βi+1/2,j(px)i+1/2,j − βi−1/2,j(px)i−1/2,j

∆x
+ O(∆x2)

+
βi,j+1/2(py)i,j+1/2 − βi,j−1/2(py)i,j−1/2

∆y
+ O(∆y2)

= fi,j.

Note that this will require densities at the cell walls.

1.3 Compatibility Condition

Poisson’s equation with all Neumann boundary conditions must satisfy a compatibility condition

for a solution to exist. The problem is given by
{

∆p = f in Ω
∇p · n = g on ∂Ω

where n is the unit normal to the boundary. From the equation we have the relations
∫

Ω

f dV =

∫

Ω

∆p dV =

∫

Ω

∇ · ∇p dV =

∫

∂Ω

∇p · n dS =

∫

∂Ω

g dS

where the third equality follows from the divergence theorem. The compatibility condition is
∫

Ω

f dV =

∫

∂Ω

g dS.

The right hand side f will be of the form f = ∇ · u⋆, and g = 0. Therefore, the compatibility
condition is

∫

Ω

∇ · u⋆ dV =

∫

∂Ω

u⋆ · n dS = 0

where the first equality follows from the divergence theorem. This condition needs to be satisfied
when specifying the boundary condition on u⋆ in order to guarantee the existence of a solution.
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