CME306 / CS205B Homework 9

1. Write out the symmetric matrix equation for the standard second order central difference approximation to the equation

$$
\begin{equation*}
\nabla \cdot\left(\frac{1}{\rho} \nabla p\right)=\nabla \cdot \vec{u}^{\star} \tag{1}
\end{equation*}
$$

with the following boundary conditions:

$$
\left\{\begin{array}{l}
p(0, y)=1 \tag{2}\\
p(1, y)=1 \\
p_{y}(x, y)=0 \quad \text { for } y \in\{0,1\}
\end{array}\right.
$$

You should assume a MAC grid (ie. that velocities live on cell faces, and that pressure and density live in the cell centers), and you may not assume a constant density. Write the equations for the following three cells:
(a) an internal cell (something sufficiently far from the boundary, ie. $p_{i j}$)

$$
\begin{aligned}
& \frac{\frac{2\left(p_{i+1, j}-p_{i, j}\right)}{\left(\rho_{i, j}+\rho_{i+1, j}\right) \Delta x}-\frac{2\left(p_{i, j}-p_{i-1, j}\right)}{\left(\rho_{i-1, j}+\rho_{i, j}\right) \Delta x}}{\Delta x}+\frac{\frac{2\left(p_{i, j+1}-p_{i, j}\right)}{\left(\rho_{i, j}+\rho_{i, j+1}\right) \Delta y}-\frac{2\left(p_{i, j}-p_{i, j-1}\right)}{\left(\rho_{i, j-1}+\rho_{i, j}\right) \Delta y}}{\Delta y} \\
& =\frac{u_{i+1 / 2, j}^{\star}-u_{i-1 / 2, j}^{\star}}{\Delta x}+\frac{v_{i, j+1 / 2}^{\star}-v_{i, j-1 / 2}^{\star}}{\Delta y}
\end{aligned}
$$

(b) a cell that lies along the x-axis boundary (ie. $p_{1, j}$), and

$$
\begin{aligned}
& \frac{2\left(p_{2, j}-p_{1, j}\right)}{\left(\rho_{1, j}+\rho_{2, j}\right) \Delta x}-\frac{2 p_{1, j}}{\left(\rho_{0, j}+\rho_{1, j}\right) \Delta x} \\
& \Delta x
\end{aligned}+\frac{\frac{2\left(p_{1, j+1}-p_{1, j}\right)}{\left(\rho_{1, j}+\rho_{1, j+1}\right) \Delta y}-\frac{2\left(p_{1, j}-p_{1, j-1}\right)}{\left(\rho_{1, j-1}+\rho_{1, j}\right) \Delta y}}{\Delta y}, \quad \frac{u_{3 / 2, j}^{\star}-u_{1 / 2, j}^{\star}}{\Delta x}+\frac{v_{1, j+1 / 2}^{\star}-v_{1, j-1 / 2}^{\star}}{\Delta y}-\frac{2}{\left(\rho_{1, j}+\rho_{2, j}\right) \Delta x^{2}}
$$

(c) a cell that lies along the y-axis boundary (ie. $p_{i, 1}$).

$$
\frac{\frac{2\left(p_{i+1,1}-p_{i, 1}\right)}{\left(\rho_{i, 1}+\rho_{i+1,1}\right) \Delta x}-\frac{2\left(p_{i, 1}-p_{i-1,1}\right)}{\left(\rho_{i-1,1}+\rho_{i, 1}\right) \Delta x}}{\Delta x}+\frac{\frac{2\left(p_{i, 2}-p_{i, 1}\right)}{\left(\rho_{i, 1}+\rho_{i, 2}\right) \Delta y}}{\Delta y}=\frac{u_{i+1 / 2,1}^{\star}-u_{i-1 / 2,1}^{\star}}{\Delta x}+\frac{v_{i, 3 / 2}^{\star}-v_{i, 1 / 2}^{\star}}{\Delta y}
$$

2. Physically, when we have an incompressible flow with all Neumann boundary conditions, what does the compatibility condition require? Is something similar required for compressible flow?
Recall that the compatibility condition requires $\int_{\partial \Omega} \vec{u}^{\star} \cdot \vec{n} d S=0$ - or equivalently that the incompressible fluid flow is not being either compressed or expanded by the boundary. No such condition exists for compressible flow, since it is free to compress or expand as necessary.
