
CME306 / CS205B Homework 7

ENO-LLF

ut +
(
u2

2

)
x

= 0 (1)

Consider Burgers’ equation (above), discretized in a conservative way with forward-Euler:

un+1
i − un

i

∆t
+
Fn

i+1/2 −F
n
i−1/2

∆x
= 0. (2)

Recall from lecture (and section) that we compute Fn
i+1/2 the numerical flux via a variety of ENO schemes.

1. Recall that Lax-Friedrichs defines, for flux Fi0+1/2, D1
iH

± = f(φi) ± αi0+1/2φi. Show that this is
equivalent to adding some viscosity to the solution and that this viscosity vanishes as ∆t,∆x→ 0.

We examine the flux component of equation (1):

Fn
i+1/2 −F

n
i−1/2

∆x
=

(Fn+
i+1/2 + Fn−

i+1/2)− (Fn+
i−1/2 + Fn−

i−1/2)

2∆x

=
f(ui) + f(ui+1) + αi0+1/2(ui − ui+1)− f(ui−1)− f(ui)− αi0−1/2(ui−1 − ui)

2∆x

=
f(ui+1)− f(ui−1) + αi0+1/2(ui − ui+1)− αi0−1/2(ui−1 − ui)

2∆x

=
f(ui+1)− f(ui−1)

2∆x
−∆x

αi0+1/2(ui+1/2)x − αi0−1/2(ui−1/2)x

2∆x

= f(ui)x +O(∆x2)−∆x
αi0+1/2(ui+1/2)x − αi0−1/2(ui−1/2)x

2∆x

We note here that if we are using global Lax-Friedrichs, αi0+1/2 = αi0−1/2 = α, giving:

(ui)t + f(u)x −
α∆x

2
(ui)xx = O(∆x2)

In local Lax-Friedrichs, we note that αi0+1/2 = αi0−1/2 +O(∆x) and we get a similar result:

(ui)t + f(u)x −
α∆x

2
(ui)xx = O(∆x2)

2. In Local Lax-Friedrichs (or ENO-LLF), we take αi0+1/2 = max{|λi0 |, |λi0+1}. A common mistake (one
that shows up even in the literature) is to try to compute a global divided difference table as

D1
iH

± = f(ui)± αi+1/2ui, (3)

Which is very different from the correct, local divided difference table for Fi0+1/2,

D1
iH

± = f(ui)± αi0+1/2ui. (4)

There are advantages to computing a global divided difference table, by saving the need to recompute
quantities that’ve already been computed. How can you do this for ENO-LLF while preserving the
correct scheme?
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The simplest approach would be to compute two divided difference tables:

D1
iH = f(ui)

and
D1

iG = ui.

Then we can take
Dn

kH
± = Dn

kH ± αi0+1/2D
n
kG (5)

at each face. Since we already have the global divided difference tables, we only perform one multipli-
cation for every lookup, rather than having to compute the divided difference table for every face.
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Discrete Conservative Form

1. Consider the following discretizations of Burger’s equation (1). Show that they are both consistent,
but that only one of them is in conservative form. Which one is in conservative form?

(a)
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∆t
+

(un
j+1)2 − (un

j )2

2∆x
= 0

0 =
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j − un
j

∆t
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⇒ 0 = ut +
(
u2

2

)
x

+O(∆t,∆x)

This is written in conservative form, and is consistent. To see that this is in conservation form,
consider the following:

d

dt

N∑
i=1

ui∆x = ∆x
∑

i
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2
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= f(un
N+1)− f(u2

1)

(b)
un+1

j − un
j

∆t
+ un

j

un
j+1 − un

j

∆x
= 0

0 =
un+1

j − un
j

∆t
+ un

j

un
j+1 − un

j
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= ut +O(∆t) + u(ux +O(∆x))

⇒ 0 = ut + uux +O(∆t,∆x)

This is consistent, but not in closed form. To see this, consider the following:

d

dt

N∑
i=1

ui∆x =
∑

i

un+1
i − un

i

∆t

=
∑

i

un
i

[
un

i+1 − un
i

]
Where the interior terms do not cancel.
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2. The equations given above are both consistent with Burger’s equation, but only one of them gives
shocks traveling at the right speed. Why is this?

The conservative formulation is guaranteed not to add or destroy material away from the interface,
so the total amount of u-stuff that pushes the shocks around doesn’t change non-physically. In the
non-conservative formulation we attempt to approximate the derivative ux between cell i and cell i+ 1;
near shocks this derivative doesn’t exist, and we have O(1) new material being added or removed; this
changes how the shock moves, giving an incorrect shock speed.

3. Consider the simple advection equation (6). Show that for this equation, ENO-Roe and ENO-LLF
schemes will produce identical results.

ut + aux = 0 (6)

it suffices to show that the flux computed by both methods agree exactly. To show this, observe that
the advection equation has a flux f(u) = au. Then the divided difference tables for ENO-LLF take the
form:

D1
iH

+ = f(ui) + |a|ui =

{
2aui = 2D1

iH a > 0
0 a ≤ 0

D1
iH

− = f(ui)− |a|ui =

{
0 a > 0
2aui = 2D1

iH a ≤ 0

(7)

In either case, one of the divided difference tables is uniformly zero, and the other divided difference
table is exactly twice the magnitude of the divided difference table of ENO-Roe. The scaling by two
doesn’t change how ENO traverses the divided difference table, so either FRoe = F+

LLF or FRoe = F−LLF

depending on the sign of a. This gives that every flux Fi0+1/2 is exactly equivalent, and thus the two
schemes give identical results.
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