CME306 / CS205B Homework 6

Essentially Non-Oscillatory Schemes

Given the following data for ϕ^{n}, write down the interpolating polynomial that third order HJ ENO would construct in order to compute ϕ_{i}^{n+1} in approximating the equation $\phi_{t}+\phi_{x}=0$.

$$
\phi_{i-3}^{n}=5, \phi_{i-2}^{n}=5, \phi_{i-1}^{n}=4, \phi_{i}^{n}=5, \phi_{i+1}^{n}=1, \phi_{i+2}^{n}=-2, \phi_{i+3}^{n}=0
$$

Recall that the interpolating polynomial for $3^{\text {rd }}$ order requires $Q_{1}, Q_{2}, Q_{3} ; Q_{0}$ will be calculated, but then promptly discarded since $\left(Q_{0}\right)_{x}=0$. Next, we calculate the divided difference table, below:

We are evaluating ϕ_{x} at i, so $Q_{0}=\phi_{i}=5$. We required an upwind direction, which gives us Q_{1}, and ENO gives Q_{2} and Q_{3} as:

$$
\begin{aligned}
Q_{1} & =\frac{1}{\Delta x}\left(x-x_{i}\right) \\
Q_{2} & =\frac{1}{\Delta x^{2}}\left(x-x_{i}\right)\left(x-x_{i-1}\right) \\
Q_{3} & =\frac{1}{2 \Delta x^{3}}\left(x-x_{i}\right)\left(x-x_{i-1}\right)\left(x-x_{i-2}\right)
\end{aligned}
$$

Putting it all together, we get:

$$
\begin{equation*}
P^{3}(x)=5+\frac{1}{\Delta x}\left(x-x_{i}\right)+\frac{1}{\Delta x^{2}}\left(x-x_{i}\right)\left(x-x_{i-1}\right)+\frac{1}{2 \Delta x^{3}}\left(x-x_{i}\right)\left(x-x_{i-1}\right)\left(x-x_{i-2}\right) \tag{1}
\end{equation*}
$$

We'll go a few steps further now, to find out what $\phi_{x}\left(x_{i}\right)$ approximately is. We evaluate $P_{x}^{3}\left(x_{i}\right)$ to be:

$$
\begin{aligned}
P_{x}^{3}(x) & =\frac{1}{\Delta x}+\frac{1}{\Delta x^{2}}\left[\left(x-x_{i}\right)+\left(x-x_{i-1}\right)\right]+\frac{1}{2 \Delta x^{3}}\left[\left(x-x_{i}\right)\left[\left(x-x_{i-1}\right)+\left(x-x_{i-2}\right)\right]+\left(x-x_{i-1}\right)\left(x-x_{i-2}\right)\right] \\
P_{x}^{3}\left(x_{i}\right) & =\frac{1}{\Delta x}+\frac{1}{\Delta x^{2}}\left(x_{i}-x_{i-1}\right)+\frac{1}{2 \Delta x^{3}}\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i-2}\right) \\
& =\frac{1}{\Delta x}+\frac{1}{\Delta x}+\frac{1}{\Delta x}=\frac{3}{\Delta x}
\end{aligned}
$$

If we happened to have chosen that $\Delta x=.5$, then $\phi_{x} \approx 6$.

Weighted ENO

If we consider an upwind discretization of ϕ_{x}, we have three possible third-order interpolating polynomials, given by

$$
\begin{aligned}
\phi_{x}^{1} & =\frac{v_{1}}{3}-\frac{7 v_{2}}{6}+\frac{11 v_{3}}{6} \\
\phi_{x}^{2} & =-\frac{v_{2}}{6}+\frac{5 v_{3}}{6}+\frac{v_{4}}{3} \\
\phi_{x}^{3} & =\frac{v_{3}}{3}+\frac{5 v_{4}}{6}-\frac{v_{5}}{6}
\end{aligned}
$$

Where $v_{j}=D^{*} \phi_{i+j-3}$, and $D^{*} \phi$ is the first-order upwind discretization of ϕ_{x}.
However, the philosophy of picking exactly one of the three candidate stencils is overkill in smooth regions of ϕ where ϕ is well-behaved. Instead, we can take a convex sum of the three stencils,

$$
\begin{equation*}
\phi_{x}=\omega_{1} \phi_{x}^{1}+\omega_{2} \phi_{x}^{2}+\omega_{3} \phi_{x}^{3} \tag{2}
\end{equation*}
$$

Where $0 \leq \omega_{i} \leq 1, \omega_{1}+\omega_{2}+\omega_{3}=1$. It has been shown that we can pick $\omega_{1}=.1, \omega_{2}=.6, \omega_{3}=.3$ and achieve a $5^{t h}$ order accurate approximation of ϕ_{x}.

1. Show that if we perturb ω by $\mathcal{O}\left(\Delta x^{2}\right)$ we still get a $5^{t h}$ order approximation to ϕ_{x}.
we know that each of ϕ_{x}^{j} for $j \in\{1,2,3\}$ are third-order accurate schemes, so $\phi_{x}^{j}=\phi_{x}+\mathcal{O}\left(\Delta x^{3}\right)$. If we take $\epsilon_{j}=\mathcal{O}\left(\Delta x^{2}\right)$ to be our perturbations to ω_{j}, then our WENO scheme for ϕ_{x} becomes:

$$
\begin{aligned}
\phi_{x} & =\bar{\omega}_{1} \phi_{x}^{1}+\bar{\omega}_{2} \phi_{x}^{2}+\bar{\omega}_{3} \phi_{x}^{3} \\
& =\left(\omega_{1}+\epsilon_{1}\right) \phi_{x}^{1}+\left(\omega_{2}+\epsilon_{2}\right) \phi_{x}^{2}+\left(\omega_{3}+\epsilon_{3}\right) \phi_{x}^{3} \\
& =\omega_{1} \phi_{x}^{1}+\omega_{2} \phi_{x}^{2}+\omega_{3} \phi_{x}^{3}+\epsilon_{1} \phi_{x}^{1}+\epsilon_{2} \phi_{x}^{2}+\epsilon_{3} \phi_{x}^{3} \\
& =\phi_{x}+\mathcal{O}\left(\Delta x^{5}\right)+\left(\epsilon_{1}+\epsilon_{2}+\epsilon_{3}\right) \phi_{x}+\epsilon_{1} \mathcal{O}\left(\Delta x^{3}\right)+\epsilon_{2} \mathcal{O}\left(\Delta x^{3}\right)+\epsilon_{3} \mathcal{O}\left(\Delta x^{3}\right) \\
& =\phi_{x}+\left(\epsilon_{1}+\epsilon_{2}+\epsilon_{3}\right) \phi_{x}+\mathcal{O}\left(\Delta x^{5}\right)
\end{aligned}
$$

We note that $\epsilon_{1}+\epsilon_{2}+\epsilon_{3}=0$ since we still want $\sum_{j} \bar{\omega}_{j}=1$, and this scheme is $5^{\text {th }}$ order accurate.
2. Why is this a bad idea in non-smooth areas of the flow? In order to demonstrate this, consider $\phi_{t}+\phi_{x}=0$ for a heaviside step function, with initial data given by:

$$
\phi_{i-3}^{n}=0, \phi_{i-2}^{n}=0, \phi_{i-1}^{n}=0, \phi_{i}^{n}=1, \phi_{i+1}^{n}=1, \phi_{i+2}^{n}=1, \phi_{i+3}^{n}=1
$$

We've discussed in class that any scheme which adds over-shoots to a problem can lead to non-physical oscillations near discontinuities. With that in mind, consider the WENO approximation which is made for ϕ_{x} at x_{i-1}. The divided difference table takes the form:

If we read off the table, we get:

$$
v_{1}=0 \quad v_{2}=0 \quad v_{3}=0 \quad v_{4}=\frac{1}{\Delta x} \quad v_{5}=0
$$

Both ϕ_{x}^{2} and ϕ_{x}^{3} give a non-zero approximation to ϕ_{x}, even though both the ENO approximation as well as the analytical solution gives $\phi_{i-1}=0$ for $t>0$. In HJ-WENO there is no way to avoid pulling in bad information near a discontinuity, which is why it is not a good method to use near non-smooth regions of the flow.

