CME306 / CS205B Homework 6

Essentially Non-Oscillatory Schemes

Given the following data for ϕ^{n}, write down the interpolating polynomial that third order HJ ENO would construct in order to compute ϕ_{i}^{n+1} in approximating the equation $\phi_{t}+\phi_{x}=0$.

$$
\phi_{i-3}^{n}=5, \phi_{i-2}^{n}=5, \phi_{i-1}^{n}=4, \phi_{i}^{n}=5, \phi_{i+1}^{n}=1, \phi_{i+2}^{n}=-2, \phi_{i+3}^{n}=0
$$

Weighted ENO

If we consider an upwind discretization of ϕ_{x}, we have three possible third-order interpolating polynomials, given by

$$
\begin{aligned}
\phi_{x}^{1} & =\frac{v_{1}}{3}-\frac{7 v_{2}}{6}+\frac{11 v_{3}}{6} \\
\phi_{x}^{2} & =-\frac{v_{2}}{6}+\frac{5 v_{3}}{6}+\frac{v_{4}}{3} \\
\phi_{x}^{3} & =\frac{v_{3}}{3}+\frac{5 v_{4}}{6}-\frac{v_{5}}{6}
\end{aligned}
$$

Where $v_{j}=D^{*} \phi_{i+j-3}$, and $D^{*} \phi$ is the first-order upwind discretization of ϕ_{x}.
However, the philosophy of picking exactly one of the three candidate stencils is overkill in smooth regions of ϕ where ϕ is well-behaved. Instead, we can take a convex sum of the three stencils,

$$
\begin{equation*}
\phi_{x}=\omega_{1} \phi_{x}^{1}+\omega_{2} \phi_{x}^{2}+\omega_{3} \phi_{x}^{3} \tag{1}
\end{equation*}
$$

Where $0 \leq \omega_{i} \leq 1, \omega_{1}+\omega_{2}+\omega_{3}=1$. It has been shown that we can pick $\omega_{1}=.1, \omega_{2}=.6, \omega_{3}=.3$ and achieve a $5^{t h}$ order accurate approximation of ϕ_{x}.

1. Show that if we perturb ω by $\mathcal{O}\left(\Delta x^{2}\right)$ we still get a $5^{t h}$ order approximation to ϕ_{x}.
2. Why is this a bad idea in non-smooth areas of the flow? In order to demonstrate this, consider $\phi_{t}+\phi_{x}=0$ for a heaviside step function, with initial data given by:

$$
\phi_{i-3}^{n}=0, \phi_{i-2}^{n}=0, \phi_{i-1}^{n}=0, \phi_{i}^{n}=1, \phi_{i+1}^{n}=1, \phi_{i+2}^{n}=1, \phi_{i+3}^{n}=1
$$

