CME306 Qualifying Exam

Part I - Multiple Choice (1 point each)

1. If we have a spring with drag coefficient k_{d} and spring constant k_{s}, which of the following are sufficient to have a well-posed system?
(a) $k_{d}>0$
(b) $k_{s}>0, k_{d}>0$
(c) $k_{s} k_{d}<0$
(d) $\left(\frac{k_{d}}{2 m}\right)^{2}-\frac{k_{s}}{m x_{0}} \geq 0$
2. Suppose that we wish to discretize the equation

$$
u_{t}-u_{x}=0
$$

Choose the best discretization among the following choices.
(a)

$$
\frac{v_{i}^{n+1}-v_{i}^{n}}{\Delta t}-\frac{v_{i+1}^{n}-2 v_{i}^{n}+v_{i-1}^{n}}{\Delta x^{2}}=0
$$

(b)

$$
\frac{v_{i}^{n+1}-v_{i}^{n}}{\Delta t}-\frac{v_{i+1}^{n}-v_{i}^{n}}{\Delta x}=0
$$

(c)

$$
\frac{v_{i}^{n+1}-v_{i}^{n}}{\Delta t}-\frac{v_{i+1}^{n}-v_{i-1}^{n}}{2 \Delta x}=0
$$

(d)

$$
\left\{\begin{array}{l}
\frac{\hat{v}_{i}^{n+1}-v_{i}^{n}}{\Delta t}-\frac{v_{i+1}^{n}-v_{i-1}^{n}}{2 \Delta x}=0 \\
\frac{\hat{v}_{i}^{n+2}-\hat{v}_{i}^{n+1}}{\Delta t}-\frac{\hat{v}_{i+1}^{n+1}-\hat{v}_{i-1}^{n+1}}{2 \Delta x}=0 \\
v_{i}^{n+1}=\frac{\hat{v}_{i}^{n+2}+v_{i}^{n}}{2}
\end{array}\right.
$$

(e)

$$
\frac{v_{i}^{n+1}-v_{i}^{n}}{\Delta t}-\frac{v_{i}^{n}-v_{i-1}^{n}}{\Delta x}=0
$$

Part II - Short answer

1. (2 points) Please discuss briefly the advantages and disadvantages of using forward- vs. backward-Euler time-stepping.
2. (2 points) Why does Lax-Richtmyer require stability in addition to consistency (i.e. why isn't consistency sufficient)?
3. (2 points) Consider a simple equilateral triangle, with side lengths $\ell_{1_{0}}=\ell_{2_{0}}=\ell_{3_{0}}=1$. In world space, the sides measure ℓ_{1}, ℓ_{2} and ℓ_{3} respectively. Write down the Green strain for this deformation (it is sufficient to write down D_{m} and $D_{m}^{T} G D_{m}$).

Part III - Long Answer

1. (4 points)

$$
\begin{equation*}
u_{t}+a u_{x}=0 \tag{1}
\end{equation*}
$$

Show that the following discretization of the advection equation (1) with $a>0$ is either stable or unstable, then state the order of accuracy (ie. there is no need to justify the order of accuracy).

$$
\left\{\begin{array}{l}
u_{i}^{*}=u_{i}^{n}-a \Delta t \frac{3 u_{i}^{n}-4 u_{i-1}^{n}+u_{i-2}^{n}}{2 \Delta x} \tag{2}\\
u_{i}^{* *}=u_{i}^{*}-a \Delta t \frac{3 u_{i}^{*}-4 u_{i-1}^{*}+u_{i-2}^{*}}{2 \Delta x} \\
u_{i}^{n+1}=\frac{u_{i}^{* *}+u_{i}^{n}}{2}
\end{array}\right.
$$

