## CME306 / CS205B Homework 2

## Rotation Matrices

1. The ODE that describes rigid body evolution is given by $R^{\prime}=w^{\star} R$.
(a) Write down the forward Euler update for this equation.
(b) Show that the updated "rotation" matrix computed from this update is not orthogonal (you may assume that $R^{n}$ is orthogonal).
(c) How might one "fix" this matrix that is almost a rotation to make it rotation?
2. Another update equation is $R^{n+1}=e^{\Delta t\left(\omega^{n}\right)^{\star}} R^{n}$. Here, $\omega^{\star}$ is the cross product matrix, where $\omega^{\star} v=$ $\omega \times v$. The exponential map $e^{A}$ can be defined for square matrices using the taylor series expansion

$$
e^{\Delta t A}=I+\Delta t A+\frac{\Delta t^{2}}{2} A^{2}+\frac{\Delta t^{3}}{6} A^{3}+\ldots
$$

(a) Show that this update equation is a first order approximation of the ODE $R^{\prime}=w^{\star} R$ that it is meant to solve.
(b) Show that the result of this update is orthogonal.
(c) Find a closed form expression for this update rule. (Hint: the cross-product matrix is closed under addition; i.e. $\left(\omega^{\star}\right)^{3}=-|\omega|^{2} \omega^{\star} \ldots$ and don't forget your trigonometric identities!)
(d) Give an intuitive description of what this update rule is doing.

## Modified Equations

Consider the advection equation

$$
u_{t}+a u_{x}=0 .
$$

The numerical methods below satisfy modified equations to higher order than the advection equation itself. See Leveque $\S 8.6$ and the discussion notes for more on modified equations. You should assume $\lambda=\frac{\Delta t}{\Delta x}$ is a constant.
A. Find a modified equation for which explicit central differencing gives an $\mathcal{O}\left(\Delta t^{2}\right)$ approximation (we never want more than first-order derivatives in time, so if your solution contains $u_{t t}$, convert them to spatial derivatives). What modification to the explicit central differencing scheme does this suggest to make it a stable numerical scheme for the advection equation?
B. Find a modified equation for which your proposed method from A gives an $\mathcal{O}\left(\Delta t^{3}\right)$ approximation.

