CME306 / CS205B Homework 2

Rotation Matrices

- 1. The ODE that describes rigid body evolution is given by $R' = w^* R$.
 - (a) Write down the forward Euler update for this equation.
 - (b) Show that the updated "rotation" matrix computed from this update is not orthogonal (you may assume that R^n is orthogonal).
 - (c) How might one "fix" this matrix that is almost a rotation to make it rotation?
- 2. Another update equation is $R^{n+1} = e^{\Delta t(\omega^n)^*} R^n$. Here, ω^* is the cross product matrix, where $\omega^* v = \omega \times v$. The exponential map e^A can be defined for square matrices using the taylor series expansion

$$e^{\Delta tA} = I + \Delta tA + \frac{\Delta t^2}{2}A^2 + \frac{\Delta t^3}{6}A^3 + \dots$$

- (a) Show that this update equation is a first order approximation of the ODE $R' = w^* R$ that it is meant to solve.
- (b) Show that the result of this update is orthogonal.
- (c) Find a closed form expression for this update rule. (*Hint: the cross-product matrix is closed under addition; i.e.* $(\omega^{\star})^3 = -|\omega|^2 \omega^{\star} \dots$ and don't forget your trigonometric identities!)
- (d) Give an intuitive description of what this update rule is doing.

Modified Equations

Consider the advection equation

$$u_t + au_x = 0$$

The numerical methods below satisfy *modified equations* to higher order than the advection equation itself. See Leveque §8.6 and the discussion notes for more on modified equations. You should assume $\lambda = \frac{\Delta t}{\Delta x}$ is a constant.

A. Find a modified equation for which explicit central differencing gives an $\mathcal{O}(\Delta t^2)$ approximation (we never want more than first-order derivatives in time, so if your solution contains u_{tt} , convert them to spatial derivatives). What modification to the explicit central differencing scheme does this suggest to make it a stable numerical scheme for the advection equation?

B. Find a modified equation for which your proposed method from A gives an $\mathcal{O}(\Delta t^3)$ approximation.