
CME306 / CS205B Homework 1 (Theory)

Conservation of Mass (Eulerian Framework)

1. In an Eulerian framework, the strong form of Conservation of Mass takes the form below. Please briefly
explain the three nonzero terms in the equation.

ρt + ρux + uρx = 0 (1)

ρt is the partial time derivative of density, and describes how the density of a fixed point in space
changes with time. uρx is the advective term and describes how mass advects with a velocity field, and
ρux is the compression term, and describes how mass compresses and expands in the velocity field.

2. If we are working with a discontinuous density field or velocity field (i.e. either ρx or ux don’t exist
somewhere in the domain), we cannot use the strong form of Conservation of Mass. We can however
apply the weak form, which describes how mass changes in a control volume Ω (here, mass is given as∫

Ω
ρdV ). Please derive the weak form equation for Conservation of Mass from the strong form (note

that the weak form should have no spatial derivatives).

We begin by noting that the boundary Ω does not change, so
∫
ρtdV = ∂

∂t

∫
ρdV in an Eulerian

framework. This allows us to integrate over it and apply the divergence theorem to get:

ρt +∇ · (ρ~u) = 0
∂

∂t

∫
Ω

ρdV +
∫

Ω

∇ · (ρ~u)dV = 0

∂

∂t

∫
Ω

ρdV +
∫
∂Ω

(ρ~u) · ~dA = 0

3. In an Eulerian framework, the graphs of ρ and u in the plots below describe the state of a system.
Does ρ increase, decrease, or stay the same at the sample point y0 for each system? (You may assume
all quantities here are positive)

Recall that ρt = −ρxu− uxρ.

System 1 decreases
ρt = −(+)(+)− 0 = (−)

System 2 stays the same
ρt = −0− 0 = 0

System 3 increases
ρt = −0− (−)(+) = (+)

System 4 decreases
ρt = −(+)(+)− (+)(+) = (−)
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Convergence Analysis

Consider the wave equation
ut + aux = 0

where a = constant. Establish whether or not the following methods for solving the equation converge. If
so, what are the conditions for convergence? Hint: Use the Lax-Richtmyer equivalence theorem. Chapters
1 and 2 of the text by Strikwerda will be helpful, in addition to the discussion notes provided online.

Note that (D+φ)i = φi+1−φi

∆x , and (D−φ)i = φi−φi−1
∆x .

1. Explicit Central Differencing
vn+1
j − vnj

∆t
+ a

vnj+1 − vnj−1

2∆x
= 0.

Consistency:

un+1
j = unj +4t(ut)nj +O(4t2)

unj±1 = unj ±4x(ux)nj +
4x2

2
(uxx)nj +O(4x3)

Hence,

un+1
j − unj

∆t
+ a

unj+1 − unj−1

2∆x
= (ut)i + a(ux)i +O(4t) +O(4x2)

So the scheme is consistent.

Stability:
We use Von Neumann stability analysis, substituting vnj = gneijθ into the finite difference scheme.

gn+1eijθ − gneijθ

4t
+ a

gnei(j+1)θ − gnei(j−1)θ

24x
= 0

g − 1
4t

+ a
eiθ − e−iθ

24x
= 0

g = 1− ia4t
4x

sin θ

|g|2 = 1 + a2 4t2

4x2
sin2 θ

If 4t = O(4x2), then for some λ = constant,

|g(θ,4t)|2 ≤ 1 + a2λ4t

so the scheme is stable. Note that if 4t = λ4x, then for θ = π
2

|g(θ)|2 = 1 + a2λ2 > 1

so the scheme is unstable. Therefore, by the Lax-Richtmyer equivalence theorem, the scheme converges
if 4t = O(4x2), but does not converge if 4t = λ4x.
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2. Implicit Central Differencing
vn+1
j − vnj

∆t
+ a

vn+1
j+1 − v

n+1
j−1

2∆x
= 0.

Consistency:

unj = un+1
j −4t(ut)n+1

j +O(4t2)

un+1
j±1 = un+1

j ±4x(ux)n+1
j +

4x2

2
(uxx)n+1

j +O(4x3)

Thus,

un+1
j − unj
4t

+ a
un+1
j+1 − u

n+1
j−1

24x
= (ut)i + a(ux)i +O(4t) +O(4x2)

So the scheme is consistent.

Stability:
Applying Von Neumann stability anaylsis,

g − 1
4t

+ ag
eiθ − e−iθ

24x
= 0

(1 + i
4t
4x

a sin θ)g = 1

Since ∀4t,4x, θ

|g−1| = |1 + i
4t
4x

a sin θ| ≥ 1

We have that ∀4t,4x, θ,

|g| ≤ 1

Hence, the scheme is unconditionally stable. By the Lax-Richtmyer theorem, the scheme converges.
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3. Upwinding
vn+1
j − vnj

∆t
+ aD∗vnj = 0

If a > 0, D∗ = D−. If a < 0, D∗ = D+.

Consistency:

un+1
j = unj +4t(ut)nj +O(4t2)

unj±1 = unj ±4x(ux)nj +
4x2

2
(uxx)nj +O(4x3)

We check that the scheme is consistent for both D+ and D−:

un+1
j − unj

∆t
+ aD−un =

un+1
j − unj

∆t
+ a

unj − unj−1

4x
= (ut)i + a(ux)i +O(4t) +O(4x)

un+1
j − unj

∆t
+ aD+un =

un+1
j − unj

∆t
+ a

unj+1 − unj
4x

= (ut)i + a(ux)i +O(4t) +O(4x)

Stability:
Let’s look at the case a > 0, D∗ = D−. Using Von Neumann stability analysis,

g − 1
4t

+ a
1− e−iθ

4x
= 0

g = 1− a4t
4x

(1− e−iθ)

Let λ = 4t
4x .

|g|2 = (1− aλ+ aλ cos θ)2 + a2λ2 sin2 θ

= (1− aλ(1− cos θ)2 + a2λ2 sin2 θ

= 1− 2aλ(1− cos θ) + a2λ2(1− cos θ)2 + a2λ2 sin2 θ

= 1− 2aλ(1− cos θ) + 2a2λ2(1− cos θ)
= 1− 2aλ(1− cos θ)(1− aλ)

Since a > 0 and (1− cos θ) ≥ 0, the scheme is stable if aλ ≤ 1.
We now consider the case a < 0, D∗ = D+. Setting λ = 4t

4x ,

g = 1− aλ(eiθ − 1)
= 1− aλ(cos θ + i sin θ − 1)
= 1− aλ(cos θ − 1) + iaλ sin θ

|g|2 = (1− aλ(cos θ − 1))2 + a2λ2 sin2 θ

= 1− 2aλ(cos θ − 1) + a2λ2(cos θ − 1)2 + a2λ2 sin2 θ

= 1− 2aλ(cos θ − 1)− 2a2λ2(cos θ − 1)
= 1− 2aλ(cos θ − 1)(1 + aλ)

Since a < 0,

= 1− 2|a|λ(1− cos θ)(1− |a|λ)

Therefore the stability condition for upwinding is |a|λ ≤ 1. Under this condition, the scheme converges.
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4. Downwinding
vn+1
j − vnj

∆t
+ aD∗vnj = 0

If a > 0, D∗ = D+. If a < 0, D∗ = D−.

Consistency:
Our anaylsis above for the upwinding scheme shows that downwinding is consistent.

Stability:
We first consider the case a > 0, D∗ = D+. From above, we have that

|g(4t,4x, θ)|2 = 1 + 2aλ(1− cos θ)(1 + aλ)

Since a > 0, for θ = π
2 we have that

|g(4t,4x, π
2

)|2 = 1 + 2aλ(1 + aλ) ≥ 1

Similarly, for the case a < 0, D∗ = D−, we showed above that

|g(4t,4x, θ)|2 = 1− 2aλ(1− cos θ)(1− aλ)
= 1 + 2|a|λ(1− cos θ)(1 + |a|λ)

so the same analysis holds as for a > 0. Therefore, downwinding is unstable, and does not converge.
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